乘法分配律教学反思

时间:2025-07-14 20:02:06
乘法分配律教学反思

乘法分配律教学反思

作为一名到岗不久的老师,教学是我们的任务之一,对学到的教学新方法,我们可以记录在教学反思中,教学反思应该怎么写才好呢?下面是小编为大家整理的乘法分配律教学反思,欢迎阅读与收藏。

乘法分配律教学反思1

乘法分配律是继乘法交换律、乘法结合律之后的新的运算定律,在算术理论中又叫乘法对加法的分配性质,由于它不同于乘法交换律和结合律是单一的运算。从某种程度上来说,其抽象程度要高一些,因此,对学生而言,难度偏大,如何使学生掌握得更好,记得更牢?我想学生自己获得的知识要比灌输得来的记得更牢。因此我在一开始设计了一个购物的情境,让学生在一个宽松愉悦的环境中,走进生活,开始学习新知。在教学过程中有坡度的让学生在不断的感悟、体验中理乘法分配律,从而自己概括出乘法分配律。我是这样设计:

一、让学生从生活实例去理解乘法分配律

一共25个小组参加植树活动,每组里8人负责挖坑和种树,4人负责抬水和浇树。重组教材,改变每组的人数,由(4+2)个25,变为(8+6)个25更能凸显出应用乘法分配律后带来的方便,也为乘法分配律的应用打下伏笔和基础。并且把“挖坑、种树”“抬水、浇树”更改为“挖坑和种树”“抬水和浇树”减少了文字对学生理解带来的困难。

通过引入解决问题让学生得到两个算式。先捉其意义,再突显其表现的形式。

如(4+2)×25其意义就是6个25与4×25+2×25所表示的也是4个25再加2个25也就是6个25,它们的表示意义一样。因此得数也一样故成等量关系。然后观察它们之们的形式变化特点,两个数的和乘以一个数可以写成两个积相加的形式,再捉住因数的特点进行分析。在此基础上,我并没有急于让学生说出规律,而是继续为学生提供具有挑战性的研究机会

借助对同一实际问题的不同解决方法让学生体会乘法分配律的合理性。这是生活中遇到过的,学生能够理解两个算式表达的意思,也能顺利地解决两个算式相等的问题。

二、突破乘法分配律的教学难点

让学生亲历规律探索形成过程。对于探索简洁分配律的过程价值,丝毫不低于知识的掌握价值。既然是“规律定律”,就是让学生亲历规律形成的科学过程设计中,不着痕迹的让学生不断观察、比较、猜想、验证,从而概括出乘法分配律,在探索、归纳过程中,渗透着从特殊到一般,又由一般到特殊的数学思想和方法。

相对于乘法运算中的其他规律而言,乘法分配律的结构是最复杂的,等式变形的能力是教学的难点。为了突破这个教学难点,从生活中的实际问题出发,开放引入的情境,一共25个小组参加植树活动,每组里人负责,人负责。一共有多少同学参加这次植树活动?

学生主动去设计、解决,调动学生的积极性。让学生根据自己的想法,选择自己喜欢的方案,开放给学生,发挥学生的主体性,通过去发现、猜想、质疑、感悟、调整、验证、完善,验证其内在的规律,从而概括出乘法分配律。让学生能自由地利用自己的知识经验、思维方式去尝试解决问题,在探究这一系列的等式有什么共同点的活动中。

在学生已有的知识经验的基础上,一起来研究抽象的算式,寻找它们各自的特点,从而概括它们的规律。在寻找规律的过程中,有同学是横向观察,也有同学是纵向观察,目的是让学生从自己的数学现实出发,去尝试解决问题,又能使不同思维水平的学生得到相应的满足,获得相应的成功体验。

当然,对乘法分配律的意义还需做到更式形结合解释,那就更有利于模型的建立。

乘法分配律教学反思是必要的,所以老师们一定也要好好地去对待。不断的反思,才可以促进不断的进步。以上面的文章,希望与各位同行们共同进步。

乘法分配律教学反思2

乘法分配律是在学生学习了加法交换律、结合律和乘法交换律、结合律的基础上教学的。它的教学重点是让学生感知乘法分配律,知道什么是乘法分配律,难点是理解乘法分配律的意义,并会用乘法分配律进行一些简便运算。所以本堂课我通过口算、读算式、写类似算式等多种方式让学生去感知乘法分配律,最后由学生总结出乘法分配律概念。本堂课我感到比较满意的地方,就是把课堂的主体权交给了学生,学生们都很主动积极的参与到学习中来,可是不足之处颇多。

一、本课堂我的教学程序是:先让学生独学“学一学”部分的6个问题,第1、2个问题根据情景图上所给的信息估算并列出算式:(4+2)×25和4×25+2×25;第3个问题让学生观察这两个算式的特点;第4个问题根据你的发现完成填空。25×(40+4)=25×()+25×()、65×17+35×17=(+)×()(意图是让学生体验乘法分配律);第5个问题试着举出类似的例子;第6个问题试一试:你可以用a、b、c分别表示三个数,写出你的发现吗?(a+b)×c=()×()+()×()。独学完六个问题后,学生通过群学和小组在全班的展示,进一步达成学习目标。接下来,通过练习检测学生对乘法分配律的理解和应用。最后通过两道练习题对所学内容进行了延伸。((1)28×18-8×28、(2)25×99)

二、不足之处:

1、在要求同学们去总结出乘法分配律的概念时老师没有很好的引导,导致同学对乘法分配律特点的认识比较模糊。

2、在学生总结出乘法分配律的概念时,我只是一笔带过的把乘法分配律通过课件再展示给学生们看了一遍,没有反复强调乘法分配律的特点,导致学生没有较好的掌握乘法分配律。

3、课堂用语不够简洁。

三、结合学生的掌握情况我觉得教学此内容需要注意以下几点:

1、区分乘法结合律与乘法分配律的特点,多进行对比练习。

乘法结合律的特征是几个数连乘,而乘法分配律特征是两数的和乘一个数或两个积的和。在练习中(40+4)×25与(40×4)×25这种题学生特别容易出现错误。为了学生更好地掌握可以多进行一些对比练习。如:进行题组对比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;练习中可以提问:每组算式有什么特征和区别?符合什么运算定律的特征?应用运算定律可以使计算简便吗?为什么要这样算?

2、学生进行一题多解的练习,经历解题策略多样性的过程,优化算法,加深学生对乘法结合律与乘法分配律的理解。

如:计算125×88;101×89你能用几种方法?125×88①竖式计算;②125×8×11;③125×(80+8);④125×(100-12);⑤(100+25)×88;⑥(100+20+5)×88等等。101×89①竖式计算;②(100+1)×89;③101×(80+9);101×(100-11);101×(90-1)等。对不同的解题方法,引导学生进行对比分析,什么时候用乘法结合律简便,什么时候用乘法分配律简便?明确利用乘法结合律与乘法分配律进行间算的条件是不一样的。乘法结合律 ……此处隐藏14016个字……整地感知,对所列算式进行观察、比较和归纳,大胆提出自己的猜想并举例进行验证。

所以,本课的教学目标,我定位在:

(1)从学生已有生活经验出发,通过观察、类比、归纳、验证、运用等方法深化和丰富对乘法分配律的认识。

(2)渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索、发现问题,解决问题的能力,提高数学的应用意识。

本单元教材的一个鲜明特点是,不再仅仅给出一些数值计算的实例,让学生通过计算,发现规律,而是结合学生熟悉的问题情境,帮助学生体会运算定律的现实背景。这样便于学生依托已有的知识经验,分析比较不同的解决问题的方法,引出运算定律。

教材提供了这样一个主体图:春季里,同学们开展植树活动,一共有25个小组,每组里4人负责挖坑、种树,2人负责抬水、浇树。需要解决的问题是:一共有多少人参加植树活动?学生会用两种不同的方法分别列出算式,接着通过计算发现,两个算式可以用“=”连接,即25×(4+2)=25×4+25×2。我将其首先呈现给学生,目的是结合学生熟悉的问题情境,帮助学生体会运算定律的现实背景。

接着设计“悬念”,抛出四组题目,把学生引到“两算式的结果相等”的情况中来。先请学生猜想,而后验证,再请学生编题,让每一个学生都不由自主地参与到研究中来。在编题过程中,很多学生都交出了正确的“答卷”,增强了他们学习的自信心和继续研究的欲望。接着,请同学在生活中寻找验证的方法,以四人小组为研究单位,学生的思维活动一下子活跃起来,纷纷探究其中的奥秘。小组讨论的方式,更促使学生之间进行思维交流,激发学生希望获得成功的动机。

通过实践、讨论,揭示了乘法分配律。再通过用自己喜欢的方式来表述乘法分配律加以内化。这样做,学生学得积极、学得主动、学得快乐,自己动手编题、自己动脑探索,从数量关系变化的多次类比中悟出规律,“扶”得少,学生创造得多,学生学会的不仅仅是一条规律,更重要的是,学生学会了自主自动,学会了进行合作,学会了独立思考,学会了像数学家一样进行研究、发现!这对十岁左右的孩子来说,其激励作用无疑是无比巨大的,而“爱思、多思、会思”的学习习惯,会让孩子一生受益。纵观教学过程,学生学得轻松,学得主动。

我通过这节课的教学感受到:认真钻研教材,深入挖掘教材中的宝贵资源,会使教材的内涵更有广度和深度,也为培养和发展学生思维的灵活性,提供了更广阔的空间。

乘法分配律教学反思15

乘法的分配律学生在本册书中是接触过的。譬如第42页的应用题第7题,其中就渗透了乘法的分配律。在数学一课一练上也有过这种类似的形式。以前在讲的时候是从乘法的意义上来帮助学生理解。

一、抓住重点。让学生理解乘法分配律的意义。

教材按照得出两道算式,把两道算式写成等式,分析两道算式之间的联系,写出类似的几组算式。发现规律,用语言或其他方式交流规律,给出用字母式子表示的运算律。这样的安排,便于学生经历观察、分析、比较和根据的过程。能使学生在合作交流的过程中,对简洁分配律的认识由感性逐步上升到理性。教学用书上写道:教学的重点和关键应是引导学生自主发现规律,用语言或其他方式与同伴交流规律。

在教学时,我是按照如上的步骤进行教学的。可是在我引导学生把算式写成等式的时候让学生观察左右两边算式之间的联系与区别之后,学生就根本不知道从何下手。在他们的印象中,联系就是根据乘法的意义来进行联系。根本没有从数字上面去进行分析。可以说,局限在原先的思维中,而没有跳出来看。而让学生写出几组算式后,观察分析几组等式左右两边的区别之后,学生也还是无法用语言来表达这一规律。场面一时之间很冷,后来我只好直接让学生用字母来表示,变化为这样的形式之后,有很多的学生都能够写出来。

我不明白这是为什么,时间我给了,小组也交流了,在小组交流时我已经发现我们班上的学生根本无法发现其中的规律,所以也根本无法用语言来进行表达。难道是坡度给得不够吗?还是平时的教学中出现了问题。这些都要一一地去分析。

总之,这个关键今天并没有完成好。

二、考虑学生的学习情况,尊重他们的主观感受。

在引导学生把两道算式拼成一道等式之后,我让学生交流,结果学生给出了两种(65+45)×5=65×5+45×5。和65×5+45×5=(65+45)×5。我把这两种方式都板书上黑板上。教材上要求的是第一种,即把(65+45)×5写在等式的左边,是为了方便学生对乘法分配律的意义的理解。我认为,从乘法的意义这个角度上来说,意义的理解我们班级可以做到。既然是从意义出发,那么两种方式其实都是可以的。所以在用字母来表达时,我们班的同学也有了两种的表达方式:即(A+B)×C=A×C+B×C和A×C+B=(A+B)×C。我都板书在黑板上,只是在规范的那一道上面画了个星,告诉学生,乘法分配律的表示一般性采用的是这一条。

三、练习中注意乘法分配律的变式。

乘法分配律的意义是用,是为了计算的简便。所以,在练习中我注意让学生说清楚怎么使用的。尤其是想想做做第2题中的74×(20+1)和74×20+74。一定要学生说清楚括号中的1是从哪儿来的。但是简便的思想渗透得还很不够。学生在完成想想做做第5题的时候,一大半的学生都没有采用简算的方法。哪怕他们在经过了第四题的练习时也是一样。

今天教学了运算律——乘法分配律,对于例题的解决,学生能列出不同的算式,45*5+65*5和(45+65)*5,通过各自的计算得出计算结果相同,然后把这两条算式写成等式45*5+65*5=(45+65)*5,学生还能用自己的语言表述自己对等式的理解:45个5加65个5也就是(45+65)个5,然后又让学生再仿写了几个算式后让学生观察等式总结自己的发现,学生会用字母表示出这一规律,但用语言表述有困难了。想想做做第1题只有几个学生把第3小题填错,其实包括后面的练习中,把A*C+B*C改写成(A+B)*C的正确率要比把(A+B)*C改写成A*C+B*C的正确率高,可能还是学生受以前:45个5加65个5也就是(45+65)个5的理解方法的限制而没学会用自己的语言表述乘法分配律,从而也没能真正掌握乘法分配律含义的缘故吧。

想想做做第2题的第3小题74*(21+1)和74*21+74部分学生没有发现它们是相等的,我让认为相等的学生表述理由,学生能把算式改写成74*21+74*1再运用乘法分配律变形成74*(21+1),学生理解后我补充77*99+77=□(□○□)让学生填空,完成情况好多了,在拓展练习时补充了A*B+B=□(□○□)和A*B+B=□(□○□)让学生进一步真正理解乘法分配律的意义。但学生在完成想想做做第5题时,学生多习惯列式48*3+48*2来计算,却不能灵活运用所学知识列成(3+2)*48来计算,虽然运用乘法分配律进行简便计算是下一课的学习内容,但我也由此反思出我教学的不足之处,在例题教学时只关注了得出等式,却忽略了让学生比较等式两边的算式哪边比较简便。于是在第4题的算算比比中才补上了这一点。

《乘法分配律教学反思.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式